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The coronavirus disease 2019 (COVID-19) is a public health

emergency of international concern. The rising number of

cases of this highly transmissible infection has stressed the

urgent need to find a potent drug. Although repurposing of

known drugs currently provides an accelerated route to

approval, there is no satisfactory treatment. Polyphenols, a

major class of bioactive compounds in nature, are known for

their antiviral activity and pleiotropic effects. The aim of this

review is to assess the effects of polyphenols on COVID-19

drug targets as well as to provide a perspective on the

possibility to use polyphenols in the development of natural

approaches against this viral disease.
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Introduction
The worldwide outbreak of highly transmissible fatal

pneumonia referred to as Coronavirus Disease-2019

(COVID-19) is causedby a zoonoticpathogenic virus called

Severe Acute Respiratory Syndrome Coronavirus-2

(SARS-CoV-2). SARS-CoV-2 and SARS-CoV belong to

the b-coronaviruses lineage B and are similar to the Middle

EastRespiratorySyndromeCoronavirus (MERS-CoV) that

hademergedworldwidein2002and2012[1].Coronaviruses

are enveloped, non-segmented, positive-sense single-

stranded RNA viruses whose genomes range from 26 to

32 kilobases, the largest known viral RNA genome [2�].
Located at the 5’ end of the SARS-CoV-2 genome, open

reading frames ORF1a andORF1b encodeforpolyproteins

that are consequently processed by proteolytic cleavage
www.sciencedirect.com 
into non-structural proteins such as RNA-dependent RNA

polymerase (RdRp), papain-like protease (PLpro) and

3-chymotrypsin-like protease (3CLpro) [3,4]. ORFs located

at the 3’ end of the viral genome encodes for structural

proteins including spike (S), envelope (E), membrane (M)

andnucleocapsid(N)proteins[3].Theviralsurfaceproteins

(S, E and M) are embedded in a lipid bilayer, while the

nucleocapsid protein coats the single-stranded positive-

sense viral RNA [4]. SARS-CoV-2 utilizes the extensively

glycosylated S protein that protrudes from the viral surface

to bind to angiotensin-converting enzyme 2 (ACE2) and

mediate host-cell entry [5]. After binding the host-cell

receptor, host proteases such as the serine protease

TMPRSS2 cleave the viral S protein to release the spike

fusion peptide [4,5,6�].

Therapies against coronavirus can be categorized into two

groups: drugs targeting the virus and drugs acting on human

cells or the immune system. The key SARS-CoV-2 targets

comprise three non-structural proteins (3CLpro, PLpro and

RdRp) and a structural protein (S protein), which are

responsible for replication, transcription and host cell rec-

ognition [7]. However, therapies such as vaccines and

monoclonal antibodies may lose their efficiency if the virus

mutates and changes its antigenicity. Therefore, drugs

targeting host-cell viral receptors (ACE2) and improving

the immune response have strong potential. Polyphenols

have a broad antiviral activity against a diverse group of

viruses such as influenza A virus (H1N1), hepatitis B and C

viruses (HBV/HCV), herpes simplex virus 1 (HSV-1),

human immunodeficiency virus (HIV) and Epstein-Barr

virus (EBV) [8]. The present mini-review aims to report

in silico and in vitro evidence of the potential of polyphenols

as anti-SARS-CoV-2agents. Putative mechanisms of action

by which these natural compounds exert their potential

activity against SARS-CoV-2 are presented in Figure 1.

Wealsosummarizeresearchapproachesthatmayaccelerate

the discovery of anti-SARS-CoV-2 polyphenols. We

have reviewed literature spanning from 2000 to 2020 and

53% of the cited references were published in the past

two years.

Polyphenols inhibiting SARS-CoV-2
fusion/entry
Polyphenols binding to S protein

The S protein is a large membrane glycoprotein that

belongs to a group of class I viral fusion glycoproteins

that also includes HIV glycoprotein 160 (Env), influenza

haemagglutinin (HA) and Ebola virus glycoprotein [9].

The peripheral amino (S1) subunit can independently
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Effect of polyphenols on different steps of the SARS-CoV-2 life cycle. Polyphenols potentially inhibit binding of SARS-CoV-2 spike protein to host-

cell receptor ACE2, prevent viral entry into the host cell, and inhibit viral RNA replication and protein processing.
bind cellular receptors while the carboxy (S2) terminus is

embedded into the viral envelope and is required to

mediate fusion of viral and cellular membranes [10]. In

coronaviruses, the S protein is the sole viral membrane

protein responsible for cell entry. It defines viral tropism

by its receptor specificity and membrane fusion activity

during virus entry into cells [11]. Drugs targeting SARS-

CoV-2 spike protein impede spike-mediated membrane

fusion and prevent virus entry into the host cells. These

therapeutic agents include vaccines, antibodies, small
Current Opinion in Food Science 2020, 32:149–155 
interfering RNAs, peptides, and non-peptidic small mole-

cules such as polyphenols [9].

Luteolin and quercetin inhibited SARS-CoV infection by

preventing virus entry into Vero E6 cells with EC50 values

of 10 mM and 83 mM, respectively [12�]. In the same

study, luteolin was found to bind with high affinity to

SARS-CoV S protein, suggesting an antiviral mechanism

of action involving interference with the function of the

S protein. A literature-based discovery approach [13]
www.sciencedirect.com
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revealed that emodin, an anthraquinone-type polyphenol

found in rhubarb roots (Rheum officinale) interfered with

the S protein-ACE2 interaction in a cell-free competition

assay with an IC50 of 200 mM [14]. The same study also

revealed that emodin reduced the infection of Vero E6

cells expressing ACE2 by an S protein-pseudo typed

retrovirus. Although the mechanism of action is still

unclear, these results suggest competition at the S protein

receptor binding domain (RBD). Following the findings

of a host-virus interactome network analysis of various

viruses including SARS-CoV [15��], emodin has emerged

as one of 16 most repurposable agents for COVID-19

with least expected adverse effects and highest target

specificity [16].

Molecular docking and dynamic simulation studies pre-

dict polyphenols from plants such as Citrus and Curcuma
species to have a potential inhibitory effect on SARS-

CoV-2 infection by interacting with the S protein RBD. A

study has shown stronger interactions of polyphenols

from Curcuma spp. (curcumin and derivatives) and Citrus
spp. (tangeretin, hesperetin, hesperidin) to the S protein

(PDB: 6LXT) than nafamostat [8], the reference antiviral

[17]. Hesperidin was predicted to target the binding

interface between S protein and ACE2 by positioning

on the middle shallow pit of the surface of the S protein

RBD [18�]. Naringenin, found in a variety of herbs and

fruits, had a stronger binding energy with the spike

glycoprotein (PDB: 6VSB) than remdesivir [19], an anti-

viral temporarily approved by the FDA in the treatment

of COVID-19 [20]. Epigallocatechin gallate, abundant in

tea, as well as herbacetin from Rhodiola spp. (golden root)

and other flavonoids also interacted strongly with S pro-

tein RBD (PDB: 6VXX) in silico [21].

Polyphenols targeting ACE2

ACE2 is a type I transmembrane metallocarboxypepti-

dase found in many tissues such as the lungs, heart, blood

vessels, kidneys, liver and epithelial cells [22]. ACE2 is a

pivotal enzyme in the physiological renin-angiotensin

system, as it hydrolyzes vasoconstricting angiotensin II

to generate vasodilating angiotensin (1-7) [23]. Being

SARS-CoV-2’s point of entry into the host cells, ACE2

has gained attention as a potential drug target. Screening

for ligands of ACE2 with a binding affinity strong enough

to inhibit virus entry has unveiled polyphenols as prom-

ising candidates. A molecular docking study using a

computational model of the SARS-CoV-2 spike protein

interacting with human ACE2 receptor found that erio-

dictyol, a flavanone found in yerba santa (Eriodictyon
californicum) had one of the greatest binding affinity for

the human ACE2 receptor portion of the interface

amongst 77 candidates [24]. Another computational study

showed that flavonoids curcumin and catechin establish

hydrogen bonds, carbon-hydrogen bonds and p–s
interactions with ACE2, resulting in binding affinities

of �7.8 kcal/mol and �8.9 kcal/mol respectively [25].
www.sciencedirect.com 
Although in silico experiments predict promising results,

more in vitro and in vivo studies are needed to evaluate

whether polyphenols binding to ACE2 impacts viral

entry.

Growing evidence suggests that controlling ACE2

expression might help modulate COVID-19 symptoms.

In fact, SARS-CoV infection was found to downregulate

ACE2 receptor [26]. Moreover, mice with inactivated or

knocked-out ACE2 developed more severe acute lung

injury following SARS-CoV infection than wild-type mice

and these symptoms were reversed after administration of

recombinant ACE2 [27�]. Similarly, cell-based assays

have shown that SARS-CoV and SARS-CoV-2 viral entry

and infection were blocked by soluble forms of ACE2

[22,28], indicating that recombinant ACE2 might act as a

decoy receptor for the S protein. The soluble recombi-

nant human ACE2, APN01 developed by the Austrian

biotech company Apeiron Biologics [29] is currently

undergoing phase II clinical trials for the treatment of

COVID-19.

It was recently suggested that dietary intake of resvera-

trol, a polyphenol found at high concentrations in the skin

of red wine grapes (Vitis vinifera) could modulate SARS-

CoV-2 disease severity by regulating ACE2 expression

and function [30�]. Rodents fed a high-fat diet supple-

mented with resveratrol have shown upregulated ACE2

expression [31] and increased ACE2 protein levels [32,33]

compared to rodents fed a high-fat diet alone. Several

publications have also reported that curcumin targeted

the renin-angiotensin system by regulating angiotensin II

levels in mice [34,35]. These results suggest a potential

for polyphenols to modulate the severity of COVID-19

symptoms through modulation of ACE2 abundance.

Therefore, polyphenols might (i) reduce SARS-CoV-2

viral infection by binding to the ACE2 receptor, prevent-

ing the viral entry, and (ii) modulate the severity of lung

injury associated with COVID-19 by regulating ACE2

expression. However, it is important to note that, given

ACE2 pivotal role in physiopathological processes, target-

ing the enzyme still needs careful evaluation to ensure

the benefit-risk balance is favorable.

Polyphenols disrupting SARS-CoV-2
replication
Polyphenols inhibiting SARS-CoV-2 viral proteases

Protease inhibitors have been developed to stop the

spread of viruses that cause diseases such as HIV-AIDS,

MERS, and SARS [36,37]. Thus, drugs inhibiting viral

proteases are also suggested to be the good candidates to

hinder SARS-CoV-2’s life cycle. Replication of corona-

viruses requires correct proteolytic processing of the

replicase polyproteins by viral proteases leading to the

release of non-structural and structural proteins [38,39].

SARS-CoV-2 polyproteins are processed by a main
Current Opinion in Food Science 2020, 32:149–155
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protease, 3CLpro (also known as Mpro), and by papain-like

proteases, PLpro [39]. These proteases are involved in

the replication and transcription of the SARS-CoV-2,

especially 3CLpro, which plays a vital role in polyprotein

processing and virus maturation [4,7]. Hence, 3CLpro is

one of SARS-CoV-2 best characterized drug targets, and

studies have shown that development of antiviral agents

targeting 3CLpro could provide an effective first line of

defense against coronaviruses infections [39–42]. Natural

compounds inhibitors of SARS-CoV proteases include

diarylheptanoids [43,44�], terpenoids [7,45], cinnamic

amides [46], flavonoids [47–50] and coumarins [47].

Inhibition of 3CLpro was shown in silico and in vitro with

epigallocatechin gallate (IC50 = 73 mM), gallocatechin

gallate (IC50 = 47 mM) and quercetin (IC50 = 73 mM)

[50,51]. Structure-activity relationship analysis of seven

polyphenols revealed that flavonoids and isoflavonoids

lacking an OH group at 5’-position of the B ring decreased

3CLpro inhibitory activity [50]. Screening by molecular

docking of 33 molecules including natural products, anti-

virals, antifungals and antiprotozoal agents revealed that

rutin (a citrus flavonoid) could bind to the active site of

the SARS-CoV-2 3CLpro (PDB: 6Y84) with the highest

affinity among the molecules screened [44�]. Other citrus

flavonoids such as tangeretin and naringenin and poly-

phenols from Curcuma spp. were also reported to bind

strongly to SARS-CoV-2 3CLpro substrate binding

domain, while interacting with the S protein and ACE2

in silico, predicting stronger antiviral potential of these

polyphenols compared to lopinavir and nafamostat [8].

Several polyphenols were also found to have a synergistic

effect on 3CLpro and PLpro. In cell-free and cell-based

assays, chalcones isolated from Angelica keiskei exhibited

competitive inhibition of the SARS-CoV serine protease

3CLpro, whereas noncompetitive inhibition was observed

with the SARS-CoV cysteine protease PLpro [47]. Dietary

flavonoids such as kaempferol and isoliquiritigenin, as

well as polyphenols from Broussonetia papyrifera also

synergistically inhibited 3CLpro and PLpro in vitro [49].

Polyphenols inhibiting SARS-CoV-2 RdRp

SARS-CoV-2  RdRp is a key target in the development of

therapies against COVID-19. One of the antivirals tempo-

rarily approved by the FDA for the treatment of

COVID-19, remdesivir is an analogue of adenosine and acts

as a false substrate for RdRp [20,52]. Remdesivir terminates

RNA synthesis once it gets incorporated into the viral RNA

at position I, successfully inhibiting RdRp [52].

Potential inhibition of SARS-CoV-2 RdRp by polyphenols

emerged from evidence that resveratrol significantly

inhibited MERS-CoV replication in vitro by inhibition

of RNA expression and nucleocapsid protein expression

[53�]. Such evidence suggests that resveratrol may also be

effective against SARS-CoV-2 infection [54]. However,
Current Opinion in Food Science 2020, 32:149–155 
resveratrol has limited bioavailability; thus, nanoparticle

formulations and intranasal administration have been

proposed to improve its efficacy in the treatment of

COVID-19 [55]. Fenoterol, a polyphenolic b2-adrenergic
receptor agonist, as well as the naturally occurring flavone,

baicalin from Scutellaria baicalensis and several xanthones

from Swerti apseudochinensis were identified as potential

SARS-CoV-2 RdRp inhibitors by computational methods

[18�]. Another in silico study recently reported that epi-

gallocatechin gallate, myricetin, quercetagetin and other

polyphenols exhibited high binding affinity towards the

RdRp of both SARS-CoV and SARS-CoV-2 [56].

Polyphenols suppressing the host
inflammatory response
The host response to SARS-CoV-2 ranges from minimal to

severe respiratory failure with multiple organ failure [16].

In some patients, SARS-CoV-2 induces excessive

non-effective host immune responses, referred to as the

cytokine storm, that are associated with severe lung pathol-

ogy, leading to death. The cytokine storm is characterized

by increased plasma concentrations of interleukins, granu-

locyte-colony stimulating factor, interferon-g-inducible
protein 10, monocyte chemoattractant protein 1, macro-

phage inflammatory protein 1a, and tumor necrosis factor a
[57]. The effects of cytokine storm have been attributed to

IL-6 cytokine [16] and viral activation of the NLRP3

inflammasome, which causes increased production of

inflammatory cytokines [54]. Although several IL-6 inhi-

bitors (e.g. sarilumab, siltuximab and tocilizumab) are in

various stages of COVID-19 clinical testing, in the absence

of sufficient clinical data, the National Institutes of Health

(NIH) does not presently support a recommendation for or

against the use of IL-6 inhibitors for the treatment of

COVID-19 [58].

Developing effective regulators of the immune response

would inhibit the cytokine-driven hyperinflammatory

syndrome for the management of COVID-19. As such,

indomethacin has been proposed as an adjunct to

COVID-19 antiviral therapy, since it combines anti-

inflammatory properties and antiviral activity against

SARS-CoV-2 [55]. Similarly, polyphenols, whose immuno-

modulatory properties are well documented [59,60,61��],
couldhaveabeneficialeffectagainstSARS-CoV-2-induced

cytokine storm. A non-extensive list of polyphenols that

reduced pro-inflammatory cytokines in vitro and in vivo
includes curcumin, resveratrol, epigallocatechin gallate,

emodin, naringenin, apigenin and kaempferol [61��,62�].
Inourownresearch,oral treatmentofhigh-fat fedmicewith

the hop flavonoid xanthohumol lowered plasma IL-6 levels

by about 80% compared to control mice [63].

Systematic exploration of polyphenols as
antiviral agents
Our review of the literature demonstrates that polyphe-

nols have been investigated for their potential against
www.sciencedirect.com
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SARS-CoV viruses in molecular modeling studies,

cell-free polyphenol–protein interaction studies, and in

cell-based virus infection studies. Convincing evidence

suggests polyphenols such as epigallocatechin gallate,

resveratrol and curcumin are prime candidates for pre-

clinical and clinical studies. As a note of caution, in silico
and in vitro approaches used for screening do not validate

the efficacy of the tested polyphenols against the human

viral disease. A potential modulation of COVID-19 sever-

ity by polyphenols regulating ACE2 in vivo has been

suggested [30�,64] but there are very few studies investi-

gating the antiviral effect of polyphenols against SARS-

CoV-2 in vivo. Pudilan Xiaoyan Oral Liquid (PDL), a

traditional Chinese medicine containing four herbs and

more than 180 ingredients exhibited potent anti-SARS-

CoV-2 activity in infected hACE2 mice [65�]. It was

also reported that a nebulized formula of quercetin and

N-acetylcysteine greatly alleviated SARS-CoV-2 respira-

tory symptoms in a patient treated with hydroxychloro-

quine and antibiotics [66�]. This confirms the importance

of further clinical studies to evaluate the potential of

polyphenol-based nutraceuticals as adjuvant or main

therapy for COVID-19.

High-throughput screening approaches can accelerate the

in vitro discovery of lead candidates, the limitation being

the availability of polyphenol libraries. Screening of poly-

phenol-rich plant extracts is an alternative, widely used

approach, but it has the disadvantage that extracts contain a

multitudeofnaturalproductswith inherentproblemsofnot

being able to readily identify active principles and the

potential for pharmacological antagonism. These problems

can be overcome by combining classical bioassay-guided

fractionation with machine learning approaches to reveal

theidentityofbioactivenaturalproducts inextractswithout

the need for purification to homogeneity. In our opinion,

thelattercombinationapproachholdspromise toaccelerate

discovery because many antiviral in vitro assays can be

performed without handling live viruses and because iden-

tification of polyphenols (and other natural products) has

becomeeasieroverthepastseveralyearsthankstoadvances

inplantmetabolomicsandtheevergrowingnatural product

databasessuchasPhenol-Explorer [67],KnapSack[68],and

the Global Natural Product Social Networking (GNPS)

database [69].

Conclusions and perspectives
COVID-19 is a new disease with significant morbidity and

mortality for which there is no satisfactory treatment

available as of August 2020. The foregoing review of

the literature demonstrates that polyphenols have not

yet been widely considered and systematically investi-

gated for potential antiviral effects against SARS-CoV-2.

This area of research is at the proverbial infancy stage and

certainly has the potential to deliver valuable antiviral

therapeutics or anti-inflammatory agents in reducing

SARS-CoV-2 morbidity and mortality. Many naturally
www.sciencedirect.com 
occurring polyphenols are inexpensive to produce and

have low risk for development of toxicity, making these

compounds good candidates for preventive treatment to

decrease viral infectivity and to dampen the risk of a

virus-induced inflammatory storm. At the molecular level,

polyphenols hold promise as inhibitors of viral proteases

involved in viral replication due to their general affinity to

proteins via hydrogen bonding and their low risk of toxic

effects. The same may hold true for binding of polyphe-

nols to S protein, although pre-clinical and clinical studies

are required to strengthen existing evidence. Another

point that should be taken into account is the proper

formulation for these polyphenol-based nutraceuticals.

To counteract low bioavailability concerns and increase

concentrations of active polyphenols in the respiratory

tract, the primary site of infection, using aerosol delivery

systems, such as nebulizers and inhalers should be con-

sidered [66�,70].
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